
Theoret. Chim. Acta (Berl.) 45, 301 307 (1977) 
THEORETICA C H I M I C A  ACTA 

�9 by Springer-Verlag 1977 

Spin-Adapted Wave Functions of the 
Serber Type and Time Reversal 

Jan Vojtik 

J. Heyrovsk:) Institute of Physical Chemistry and Electrochemistry, 
Czechoslovak Academy of Sciences, 12138 Prague, Czechoslovakia 

Ji~i Figer 

Department of Physical Chemistry, Charles University, 12840 Prague, Czechoslovakia 

A procedure is proposed for generating Serber-type spin eigenfunctions with 
M S = 0. The procedure uses the time-reversal invariance of these functions to 
increase the efficiency and to reduce the storage requirements. Simplifications in 
calculating the matrix elements of an observable operator which follow from the 
use of  the time-reversal symmetry are briefly discussed. 
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1. Introduction 

In quantum chemistry, one usually uses the spin-free Hamiltonian. As a con- 
sequence, the total spin operators 8 2 and Sz are constants of motion and it is 
therefore advantageous to work with wave functions which are eigenfunctions of  the 
total spin operators S 2 and S~. When extensive CI-type calculations are performed, 
the computing time involved depends on the way in which the eigenfunctions of  the 
operators S 2 and Sz are constructed. A method which is perhaps most suited for 
calculations of  this type is that based on the Serber-type spin eigenfunctions [1, 2]. 
These functions, besides being eigenfunctions of the operators S 2 and Sz, are also 
eigenfunctions of the geminal spin operators N2,/~ = 1, 2 , . . . ,  n. For even numbers 
of electrons N = 2 n ,  these operators are defined as follows 

,~2 = ($2,_ 1 +$2u)2 ; # = l , . . . , n  (1) 

where Sv, v ~ (1, N), is the vector spin operator for the v'th electron. N-electron basis 
wave functions are taken as antisymmetrized space-spin functions 

~b~(N, S, Ms)= cd[eP(N)O~(N, S, Ms)]. (2) 

Here q~(N)= [Ii~1 cpki(i ) is a space product function, O~ is a Serber-type spin 
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function and c is a normalization constant. Basis functions (2) are of course spin 
adapted. The advantage in using the functions of the type (2) lies in that the 
evaluation of the matrix elements is not too much more complicated than that 
between two Slater determinants [2, 3]. 

In our recent paper we have examined the time-reversal (TR) invariance of the usual 
spin-independent Hamiltonian of a molecular system. We have shown that the TR 
symmetry can be used with advantage when states with Ms = 0 are treated [4]. The 
purpose of this communication is to elaborate the exploitation of the TR in the 
construction and the use of wave functions with Serber-type spin part. We choose a 
computer-oriented approach in which the spin eigenfunctions are obtained by 
diagonalization. 

2. Bases for Construction of Serber-Type Spin Functions and Splitting of Spin Spaces 

As was already mentioned in the introduction, the Serber-type spin functions are 
also eigenfunctions of the geminal spin operators ~r The simplest basis for a 2n- 
electron system is formed by the geminal spin products 

W(2n, Ms,.,  g~,. "., m,,  . )= 1~ wu(Y,, m-u) (3) 

where w,(g,, ~ )  is a normalized spin eigenfunction of the operators ~r and ~r with 
eigenvalues g , ( / , + l )  and m-- u, respectively. For example w,(1, 0)=2-1/2[~(2# 
- 1)fl(2#) + fi(2# - 1)eft2#)], M s = Y~, ~-~ is the value of the z-component of the total 
spin. 

It can be noted that the choice of the basis (3) leads to the splitting of a spin space 
Y(N, M~), adapted with respect to Sz, into subspaces Y(N, Ms, . ,  g~, .) differing in 
g, [6]. Since geminal spins g, take on the values 0 and 1, there are 2" of these 
subspaces. Of course, these subspaces are not interacting with respect to S z. 

Now let us turn our attention to a space 5~ 0, . ,  g,, .). Consider first the action of 
the TR operator on a geminal spin eigenfunction w,(~,, ~-,). Starting from the 
definition of the TR operator [5] it can be easily shown that 

Xwu(g,, ~-,) = ( - 1)s,-m, wu(g~, - ~ , ) .  (4) 

Further, we obtain 

W(Zn, 0, . ,  g~, "., mu, ")= ( -  1) 2"(s'-~") W(Zn, 0,. ,  g,,.  ; . ,  -~-~, .). (5) 

We can therefore conclude that besides the spin space 5P(2n, 0) the subspaces 
5P(2n, 0, . ,  gu,.) are also invariant under TR. As a consequence, a subspace 
,r 0 , . ,  g,, .) can generally be split into two eigenspaces of the TR operator 
5D+l(2n, 0,. , ~ , . )  and 5P_l(2n, 0,. ,g~,, .), corresponding to eigenvalues + 1 and 
- 1, respectively. These subspaces can be characterized by a set of even spins ( + l) or 
odd spins ( - 1) [4]. Thus, spin states with a given Scan be obtained by diagonalizing 
the S z matrix representatives in the subspaces Y(_ ~)~(2n, 0, . ,  ~,, .) only. The basis 
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which enables this simplification can be constructed wi th  the help of the TR 
projection operators [4] 

~_+1 =�89 f )  (6) 

where I is the unit operator. The operators ~+1 satisfy the operator equation 
S ~ + I  = +_ 1r The TR adapted orthonormal basis functions for generating 
Serber-type spin eigenfunctions with M s = 0 then can be taken as follows 

J/V+ 1(2n, 0 , . ,  su, " ; ' ,  mu, ") = C~+-1W(Zn, 0 , . ,  ~,, . ; . ,  m , ,  .). (7) 

C = 1 for Bi, = 0, g ~ { 1 , . . ,  n}, and C = 2 1 / 2  otherwise. It should be noted that the spin 
functions W(2n, 0,., y,,. ;., 0, .) are TR-adapted and contain one of the components 
W+I, W 1 only (cf. Eq. (5)). 

In applications of the direct diagonalization method for constructing spin 
eigenfunctions, the limiting factor are the dimensions of the matrices to be 
diagonalized. On the other hand, these dimensions characterize the size of the 
expansions of the resulting spin eigenfunctions and thus determine the complexity of 
the CI calculations with these functions. It seems therefore appropriate to turn 
attention to the dimensions of the spin subspaces in the splitting 

5P(2n, 0) = ~ 5P(2n, 0 , - ,~ , , - )  = ~ [SP+l(2n, 0 , . , ~ , , - ) +  
SI, . ,  f~ f l , . . ,Su  

+ 5 P_ 1(2n, 0, . ,  su, ')]" (8) 

The additional splitting in (8) is due to TR. Subspaces with a given ~2~ = 1 s, = q can 
be related to each other by appropriate permutational operations. The number of 
these subspaces is (q) and for their dimension we obtain 

P q q - k  

wherep = q/2 for q even andp = (q - 1)/2 for q odd. Let us denote a space with a given 
q as Y(2n, 0;q). The dimensions of the two subspaces ~176 1(2n, 0;q)  are given by 

dq +1 = Tr(~_+ 1) (10) 

where the trace is taken over a space ~(2n,  0; q). It is easy to see from Eqs. (5) and (6) 
that 

dq+(-1)q 
d~ +1= (11) 

2 

The dimensions of individual subspaces 5P(2n, 0; q) and .~9~+1(2n, 0; q) for n 
= 1,.., 6, together with the numbers of resulting spin states (see Sect. 3) are listed in 
Table 1. We can conclude that on exploiting the TR in generating Serber-type spin 
eigenfunctions with a given S by the direct diagonalization, the number of 
subproblems to be diagonalized does not change. The dimension of an individual 
subspace depends on S and is roughly one half of the dimension of the primary 
subspace. 
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Table 1. Splitting of spin space 5~ 0) according to Eq. (8) for 2n electrons; n = 1 , . . ,  6 a 

Dimension of  n 
q = )_.s 3-. 5P(2n, O; q) 

~=1 dq 

Number  of  spin states 
in each subspace 

Number  of spin states 
in each subspace 

dq +1 S=O S = 2  S = 4  S = 6  dq -1 S = I  S = 3  S = 5  

0 1 1 1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 1 1 0 0 
2 3 2 1 1 0 0 1 1 0 0 
3 7 3 1 2 0 0 4 3 1 0 
4 19 10 3 6 1 0 9 6 3 0 
5 51 25 6 15 4 0 26 15 10 1 
6 141 71 15 40 15 1 70 36 29 5 

a For a 2n-electron problem only subspaces 5P(2n, 0 ;q)  with q ~ n  occur. Their number  is given by 
binomial coefficient (~) 

3. Construction of Serber-Type Spin Eigenfunctions 

After having chosen an orthonormal TR-adapted basis, it is necessary to calculate 
the matrix elements of the S 2 operator, i.e. the following expressions 

( S  2)i + ~- C i C j ( ~  + l V~i [S 2 [~+1 Wj) (12) 

where we have omitted the "arguments" of the functions Wi. On using Eq. (6), the 
commutation relation [~ ' ,  S 2 ] _ = 0, the antiunitary property of the TR operator 
and the equation • 2 = ( _  1)N we obtain 

c;cj 
( 3 2 )  + _ {(m, Is21 ws)++_(w, l s 2 y [  wj)}. (13) 

2 

The first contribution can be evaluated by means of the formulas given by Salmon et 
al. [6]. 

There are two ways of evaluating the second term in Eq. (13). One can either 
calculate X Wj by means of Eq. (5) and then use the formulas by Salmon et al., or to 
derive rules for evaluation of the matrix elements or the operator $ 2 ~  between 
geminal spin products and then use them. 

A program has been written for exploiting TR to construct Serber-type spin 
eigenfunctions with M s = O  for a given total spin S. It handles cases up to 12 
electrons. The program (1) chooses the product functions Wi corresponding to the 
spin subspaces 5~( x)s(2n, 0; q), q=2 , . . ,  n, (2) calculates the matrix elements (13), 
(3) diagonalizes the individual S 2 matrices, (4) selects and stores the eigenvectors 
with a given S. In fact, one representative of the (~) subspaces 5P(_ 1)s(2n, 0; q) has 
been treated in this way; the other Serber-type spin eigenfunctions have been 
obtained by making use of the (permutational) relations between these subspaces. 
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The numbers of spin states obtained in individual runs of the program are given in 
Table 1. The only really noteworthy running times have been those for N =  12 and 
N =  10, mainly due to the diagonalization of the S 2 matrices in subspaces 
Y(-  1)~(N, 0; 6) and/or 5P(_ 1)~(N, 0; 5). The way in which the second term in Eq. (13) 
has been evaluated has had practically no effect on the running times. It can be noted 
that with our use of Jacobi algorithm, the time necessary for generating the 
corresponding spin eigenfunctions has been reduced to roughly 1/7-1/8 of the time 
which would be required for generating these spin eigenfunctions without the use of 
the time reversal. 

4. Calculation of Matrix Elements of Observable Operators 

We shall discuss the most common case when the space product functions ~(2n) in 
Eq. (2) are constructed from the orthonormal orbitals q~ki" In this case the rules for 
the evaluation of a matrix element of an observable operator 

(q~(Zn, S, 0) I f~ I ~br S, 0)) (14) 

differ from the Slater-Condon rules by factors standing at individual one- and two- 
electron integrals. A factor is essentially the matrix element of a specific 
permutational operator P between corresponding spin functions [2, 3] 

P=~=(O=I P[ 08). (15) 

On using the expansion 

O~(2n, S, 0)= .~  C~k~(_l)~W k (16) 
k=l  

we arrive at the following expression 

P _ 1 d(~'~)s a(~'j)s 
ct~--4 k~_l 1~=1 CakCfll{(V~kIPI W1) (17) 

+ <XWg I P[ ~(W~> + ( -  1)~<SWk I Pl W~> + ( -  1)~< WklPl Y W~>}. 

With the help of the relation $ 2 = (  - 1) N, the antiunitary property of the TR 
operator, and the relation [ S ,  P]_  = O, the expression in curled brackets can be 
reduced to 

2(<Wkl P[ W,)+(-1)S<yWklPI  Wz)). (lS) 

An alternative expression reads 

2(( p-1Wk l Wl) ~- ( -  1)~(P- ~Wk I J~ff W,)). (18a) 

Now, the action of the TR operator on a product spin function W k is quite simple (cf. 
Eq. (5)) and the action of a permutational operator P is more complicated. It is 
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therefore advisable to use alternatively Eq. (18) or (18a) depending on whether 
d~_~ ~)s >~ d~J )s or not, respectively. On comparing Eqs. (15), (17) and (9), (11) we see 
that, with the above recommendation, the work involved in evaluating a matrix 
element Pop is, in using TR invariance, generally reduced to roughly one half. 

5. Discussion 

Simplifications ensuing from the use of the time reversal operator in generating and 
using the Serber-type spin functions with M s = 0 stem from the use of the TR- 
adapted basis. With this basis, only independent coefficients in expansions of 
individual spin eigenstates are needed. As has been shown, the size of expansions of 
the Serber-type spin functions is reduced to roughly one half. In the computer- 
oriented procedure, this circumstance leads to the reduction of storage requirements 
and of the computing time necessary for diagonalization of the individual S a 
matrices. These facts, in turn, make the procedure practicable for greater numbers 
of electrons. 

On the other hand, the TR-adapted basis functions are more complex than 
the primary ones having, in general, the form C'{W(2n, O,.,~u,.;.,-~u,.)+ 
(-1)sW(2n, 0, . ,  Y~,. ; . , - N ~ , . ) } .  One might be led to conclude from this ex- 
pression that no gain can ensue from the exploitation of the TR-symmetry in 
evaluation of the matrix elements of an operator between Serber-type spin 
eigenfunctions with Ms=0.  Eqs. (13, 17, 18, 18a) show that even in this case the 
"spin" part of the work is reduced to roughly one half. 

It should be stressed that the above argument refers to the spin eigenfunctions with 
Ms = 0. With the singlet spin states the active exploitation of the TR-symmetry is 
therefore without any reservation profitable. With the 2n-electron states of higher 
multiplicity the situation is different: In the conventional approach, these states are 
known to be handled in the best way in the subspace IMsl =s. 

In concluding this communication we wish to compare the above procedure with the 
most suitable conventional one for higher spin multiplets. In the S = IMsl = 1 case, 
the number of spin subspaces 5P(2n, 1 ; q), 1 <~q<~n is equal to that of spaces 
5~(2n, 0; q), i.e., (~). For  q = 1, 2 .. . .  6, the dimensions of the spaces J (2n ,  1 ; q) are 
equal to 1, 2, 6, 16, 45 and 126, respectively. On comparing these values with the 
corresponding values dq-1 of Table 1, we see that from the point of view of 
construction of spin functions and storage requirements, states with Ms = 0 are more 
advisable to work with. As far as the use of these spin functions is concerned, no 
definite general conclusion can be made. The choice between spin functions with 
Ms = 0 and M s = 1 should be made upon taking into account number of electrons, 
type of spin functions included in CI calculations etc. 

An analogous consideration for higher multiplicities reveals that functions with 
I Msl= S are to be preferred to those with M s = 0. 
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